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ABSTRACT 
This paper presents an iterative, user-guided approach to 
program understanding based on a framework for analyzing 
and visualizing software systems. The framework is built 
around a pluggable and extensible set of clues about a given 
problem domain, execution environment, and/or 
programming language. The approach leverages two 
orthogonal architectural views of a system and describes how 
a proper identification of boundaries for separate concerns 
helps in reasoning about the system. 

1.  INTRODUCTION 
Adding new functionality to a large software system for 
which the documentation does not exist or is outdated 
becomes a difficult process that requires understanding of the 
system’s underlying architecture. Many low-level details in 
the source code obstruct the process of creating a system’s 
high-level, architectural abstraction that aids in reasoning 
about the system. A number of software “clustering” 
techniques have been developed to cope with this problem 
[5-7,10] but these techniques fail to provide much rationale 
behind the architecture. This becomes particularly important 
if we consider that the source code may actually contain 
accidental or emergent functionality and relationships which 
are not intended by the system’s developers. For this reason, 
we posit that architectural recovery, and software clustering 
in particular, need to be accompanied by a system 
understanding activity, which includes the use of semantic 
information before any syntactic dependencies are 
considered. Various representations can be used to describe 
successive levels of system’s abstractions. Incited by Perry 
and Wolf’s observation [8] that the key architectural 
elements of a software system are (1) processing, (2) data, 
and (3) connecting, we have developed ARTISAn [3], a tool-
supported, pluggable framework intended to aid program 
understanding and, ultimately, architectural recovery.1  

Existing software architecture recovery and program 
understanding approaches do not necessarily and explicitly 

                                                           
1 ARTISAn stands for Architectural Recovery via Tailorable, 

Interactive Source-code Analysis. 

identify all the three types of architectural elements, but 
rather focus on the computation (i.e., processing) part alone. 
Program code elements (e.g., classes) that provide 
implementation of communication services often remain 
scattered across computational components in the recovered 
architecture, instead of being identified as separate entities. 
For example, client- and server-side elements in a system 
that leverages the TCP/IP communication often end up being 
parts of the components that are actually using them. 
Furthermore, not having connecting elements explicitly 
identified poses an additional challenge to engineers, who 
must reason about which parts of the system may interact 
with which other ones, and about the protocol of possible 
communication. Similarly, since data elements only contain 
the information that is used or transformed by processing 
elements, by identifying and then abstracting away data 
elements, the reasoning about the system is considerably 
improved (e.g., in applications built using data-intensive 
architectural styles, such as pipe-and-filter). 

While in [3] we described the framework in more details 
and provided an illustrative example, in this paper we give a 
summarization of the approach with an emphasis on 
identification of program concerns at the architectural level. 
We use the term “concern” twofold: firstly, we distinguish 
among the parts of a system that account for the 
computation, interaction, and storage of the actual 
application-level information that is used and transformed 
(i.e., data) in trying to discover where their exact boundaries 
are and how they are realized in a system; secondly, the 
program elements are analyzed based on the usage scenarios 
in which they can participate. By separating program 
concerns at the architectural level, the evolution process 
becomes easier (e.g., changing the type of communication in 
a system, or porting to a new platform when the functionality 
remains the same), the overall complexity is reduced, and 
reusability improved.  

2.  OVERVIEW OF THE ARTISAn 
APPROACH 

There are two main dimensions of concerns [9] in our 
approach: (1) purpose, i.e., functionality concerns 



represented in the form of Processing, Connecting (also 
referred to as Communication), and Data elements (P, C, D); 
and (2) usage concerns, describing what is shared among 
parts of a system, and what is exclusively used by individual 
parts. For example, a class is an element that models a 
particular kind of object. This object can provide some 
functionality (P), or data (D), or communication (C). Another 
concern of interest is how this object is used in a system: 
based on its relationships with other objects it can belong to a 
region of objects exclusively used by some other regions, or 
to a shared region. These two dimensions are orthogonal, and 
complement each other. 
 

 
Figure 1 describes the approach in more details. It 

comprises three steps that are initially performed 
sequentially but may then be revisited in any order by the 
user. The first step, termed initial labeling, results in a 
classification of individual elements (e.g., classes) into 
processing (P), data (D), and communication (C) [8] based 
on ARTISAn’s clues. The result obtained during the initial 
labeling phase and a pluggable set of propagation rules 
provide input to the propagation labeling step. During this 
phase, some non-labeled elements become labeled (i.e,. 
classified as P, D, or C), based on the recognition of 
structural patterns and relationships with other, already 
labeled elements. Furthermore, this step also identifies 
possible structural inconsistencies among labeled elements 
and alerts the user about them. Initial labeling and 
propagation labeling result in an interpretation of the system 
that suggests the purpose of each of the system’s individual 
elements. 

Finally, during the def-use analysis phase, regions of 
related elements are identified based on invocation and 
inheritance relationships. The obtained regions distinguish 
between elements that are shared across regions and those 
that are exclusive to a region. The result of this phase is a 
system’s usage view representation, which provides 
information on parts of the system that could be grouped 
together based on their usage scenarios.  

Individually, the purpose and usage views provide the 
user with a classification of elements and their grouping 
based on usage analysis, respectively. These two views also 

complement each other. For example, if some unlabeled 
elements from the purpose view end up belonging to the 
same region with labeled elements of a single type, then one 
can surmise the purpose of the unlabeled elements. In total, 
our approach gives the user a better understanding of the 
system, and an opportunity to faster locate its parts that are 
of particular interest (e.g., for maintenance purposes). 

3.  ARTISAn CLUES AND INITIAL 
LABELING 

At the most general level, software systems integrate 
processing elements that exchange data via communication 
(connecting) elements [8]. By determining the type of a 
system element, one can distinguish elements with 
application-specific functionality from those with 
application-independent functionality. Typically, processing 
elements provide application-specific functionality as they 
implement the system’s requirements. On the other hand, 
communication elements typically provide application-
independent interaction facilities.  In Java, for example, 
classes interact by invoking each other’s methods and/or 
sharing data through public variables, regardless of the 
classes’ functionality. In addition, a number of off-the-shelf 
communication elements (e.g., middleware) are available. A 
useful starting point in understanding the source code of a 
system is thus in the reusable, application-independent nature 
of its communication elements. Similarly, data elements only 
contain the information that is used or transformed by 
processing elements. Therefore, identifying and then 
abstracting away data elements can further improve the 
reasoning about the system. 

Software systems are generally described by their design 
or implementation models (e.g., class diagrams). Often, the 
models are too detailed, so that their understanding becomes 
obscured. In ARTISAn, constituent elements of these models 
(e.g., classes) are at first classified into the three 
aforementioned categories, providing a user the opportunity 
to quickly gain an overview on the purpose of individual 
elements and the structure of their composition. The process 
of classifying system elements into one of the three 
categories is termed labeling. The labeling is based on 
various design and implementation snippets, termed clues. 
Clues carry syntactic, semantic, and possibly domain-
specific information, which is searched for in a system’s 
model. For example, in Java-based systems, if there is an 
attribute in a class that declares a use of the standard network 
socket library java.net.*, one can use it as a clue to the 
existence of a communication channel, which is directly used 
by this class. Similarly, all classes that implement the static 
method main, or inherit from the library class 
java.lang.Thread, or implement the java.lang.Runnable 
interface are likely to be processing elements. Furthermore, 
classes with no methods other than constructor(s) are very 
likely to be data elements.  

The clues described above comprise a subset of all the 
clues that belong to ARTISAn’s extensible and pluggable set 
of clues, which is not intended to be complete, but rather a 
starting point. We expect each programming paradigm and 
language, domain, and/or application to have their own set of 
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Figure 1: The ARTISAn framework. 



clues. ARTISAn distinguishes between the following clue 
categories: 
• Domain-independent clues, such as the Socket class 

being classified as C, or a class with no methods being 
recognized as D. This is the most general set of clues. 

• Domain-specific clues, e.g., in case a system is built on 
top of a known middleware platform. For example, an 
element of the Siena middleware is classified as C and 
the classes having access to Siena are appropriately 
marked. 

• Application-specific clues, such as a class of name 
“jigsaw.Resource” in the Jigsaw Web server being 
recognized as D. 

To visualize these concerns in a given system the 
ARTISAn tool uses different colors to represent different 
classes’ labels on the class diagram, or combinations of these 
colors if a class has more than one label. Unlabeled classes 
remain transparent. 

It should be noted that the clues are designed in such a 
way that applying them may identify one or more categories 
that an element belongs to (e.g., it is a processing and 
communicating element), but also one or more categories to 
which the element does not belong (e.g., it cannot be a 
processing or communication element). We refer to the 
former as an inclusion list, and to the latter as an exclusion 
list. This information is of particular importance during the 
propagation labeling phase. 

4.  ARTISAn RULES AND 
PROPAGATION LABELING 

It is very likely that not all elements in a system can be 
labeled based on ARTISAn clues. However, the existing 
knowledge about a system could be used to reason 
additionally about the system. Information obtained from 
clues can be propagated from labeled elements to their 
neighboring elements (both labeled and unlabeled) when 
certain conditions are satisfied. 

We refer to this kind of reasoning as clue propagation. 
Clue propagation serves as a basis for the ARTISAn 
propagation rules. The pluggable set of propagation rules 
and the result obtained during the initial labeling phase 
provide input to the propagation labeling step (Figure 1). 
During this phase, some non-labeled elements become 
labeled, based on the application of the propagation rules. 

Propagation rules are derived from structural and interaction 
patterns involving different types of elements. Figure 2 
illustrates these patterns. 

The left-hand side of Figure 2 shows that a processing (P) 
element could call other processing, communication (C), and 
data (D) elements. In other words, there are no restrictions on 
what type of elements might be called by a processing 
element. On the other hand, our experience has shown that 
off-the-shelf communication elements usually do not invoke 
any other element (e.g., in the case of socket-based 
communication), or if they do, the invoked elements could 
only be processing elements (e.g., in the case of COM-based 
communication element). We should note here that some 
technologies that are used to bridge across different 
computing platforms (e.g., the Java-to-COM bridge) may 
involve communication elements calling other 
communication elements. However, in those cases we would 
be dealing with specialized solutions that would allow us to 
recognize such situations on a case-by-case basis. 
Furthermore, these cases would be amenable to capture by 
specialized domain- or application-specific propagation clues 
and rules, which would result in an appropriate identification 
and labeling of all such elements. Finally, data elements are 
expected to be passive entities that may perform some 
rudimentary internal processing, but are otherwise not 
interacting with processing or communication elements. To 
describe the propagation rules in a more formal way, we will 
use the right-hand side of Figure 2, which is a transpose of its 
left-hand side (e.g., only P or C can call P).  

 

Figure 3: Propagation rules based on scenarios. 

Based on the caller-callee relationships in Figure 2, we 
can deduce six propagation rules, which are depicted in 
Figure 3. For example, rule 1 in Figure 3 states that if an 
element is known to be a processing element (denoted by +P 
in the middle box), then all elements that call it (its callers) 
cannot be data elements (denoted by -D).  The rationale for 
this is as follows: from the right-hand side of Figure 2 we 
know that either a P or a C can call another P. This implies 
that the caller cannot be D. Since we do not know whether 
the actual caller is P or C, we only write that it is not D. In 
this way we avoid having to make an early (but possibly 
incorrect) decision. The question mark in the right-hand 
column of rule 1 indicates that we cannot say anything about 
the elements being called by that element (its callees). 
Similarly, if an element is known not to be a processing 
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element (-P), as in rule 4, then neither the caller nor the 
elements being called can be communication elements. This 
rule is again derivable from Figure 2. If an element is not P 
then it is either C or D. We know that C can be called only 
by P, and that D can be called by P or D. It follows that C or 
D can be called by at most the union of their callers, which is 
P or D. Since we do not know whether it is P or D, we 
simply write that it is not C. All other rules can be derived in 
a similar way. 

The algorithm for applying propagation rules is based on 
the changes in the inclusion and the exclusion lists for each 
of the system’s elements. As long as there are changes in any 
of the two lists (e.g., an unlabeled element becomes labeled, 
or a processing element becomes classified as non-
connecting element), an appropriate propagation rule is run. 

This step also provides support for identifying any 
potential rule conflicts. For example, if a class is identified as 
a processing element through one propagation rule, but also 
as not a processing element using another rule, then we know 
that either the clue or one of propagation rules was 
erroneous. Conflicts are easily identifiable due to their 
simple implementation representation (+P and -P) and 
ARTISAn reports all inconsistencies to the user. At that 
point, the user has the choice to manually label the elements 
if they are of a known type, ignore the discovered conflict 
(e.g., in case when a helper class of known functionality has 
conflicting labels), or use that information to modify the set 
of clues, and rerun the propagation labeling step. In the last 
case, both the user and the tool are “learning” about new 
clues that could be used for other systems. 

5.  DEF-USE ANALYSIS IN ARTISAn 
The next step in our approach is the identification of regions, 
i.e., groups of system elements that are closely related, or 
independent of other parts of the system. To this end, we 
adapt def-use analysis. Def-use analysis is an approach that 
has already been used in literature. [4,6] proposed the use of 
dominance analysis to identify regions of related modules. 
These regions indicate parts of a system that are exclusively 
used by its other part(s) and those that are shared. Each of 
the identified regions has an entry point, which is a module 
where processing starts (e.g., a class with the main() 
method implemented). Entry points in ARTISAn are directly 
obtained from the initial labeling step (Figure 1). Those are 
all elements that satisfy the “main” clue, but also include 
elements that are able to create a new processing thread. The 
rationale for this lies in the fact that systems often spawn 
their own subsystems by creating separate processing 
threads. We can identify spawning using clues which were 
discussed previously.  

The information about regions enables a user to more 
easily recognize system elements that belong together. The 
usage view thus complements the purpose view by 
combining information about high-level functionality of 
individual elements with information about regions of related 
elements. 

6.  CONCLUSION 
This paper discussed ARTISAn, an exploratory and 
tailorable framework that helps in program understanding 
tasks. The framework comprises replaceable components to 
accommodate the exact programming environment and 
supports developers in understanding large-scale, multi-
lingual source code. The approach leverages a two-
dimensional separation of concerns, which results in two 
orthogonal views of a system: (1) high-level functionality 
view (i.e., purpose) and (2) usage view of system elements. 
In tandem, these views provide the user with a better 
understanding of the system, and an opportunity to faster 
locate the parts that are of particular interest (e.g., for 
maintenance purposes). Furthermore, the approach illustrates 
how the same program element might be involved in more 
than one concern of interest. 

There are numerous ways to improve our technique. 
Some of them include the use of reliability metrics that 
would depend on the reliability of each of the clues and rules 
applied, and may then be used to (automatically) resolve any 
of possible inconsistencies that result from the labeling 
process. The other direction of improvement is in providing a 
richer set of domain- and application-independent clues. For 
example, the fact that delegating classes act as facades or 
wrappers to other classes, might turn up to be useful in 
recognizing communication-processing relationships. 
Furthermore, the presented rule set can be extended by 
additional rules that include additional system concerns as 
subcategories of the three major element groups (P, C, and 
D), such as GUI (P) and interruptible communication (C) 
type elements. Such a richer propagation rule set would lead 
to a better understanding of the purpose of a system’s 
elements and, ultimately, its architecture. 
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