
Separating Architectural Concerns
to Ease Program Understanding

Vladimir Jakobac

Computer Science Dept.
Univ. of Southern California

Los Angeles, CA 90089, USA
jakobac@usc.edu

Nenad Medvidovic

Computer Science Dept.
Univ. of Southern California

Los Angeles, CA 90089, USA
neno@usc.edu

Alexander Egyed

Teknowledge Corporation
Marina Del Rey,
CA 90292, USA

aegyed@teknowledge.com

ABSTRACT
This paper presents an iterative, user-guided approach to
program understanding based on a framework for analyzing
and visualizing software systems. The framework is built
around a pluggable and extensible set of clues about a given
problem domain, execution environment, and/or
programming language. The approach leverages two
orthogonal architectural views of a system and describes how
a proper identification of boundaries for separate concerns
helps in reasoning about the system.

1. INTRODUCTION
Adding new functionality to a large software system for
which the documentation does not exist or is outdated
becomes a difficult process that requires understanding of the
system’s underlying architecture. Many low-level details in
the source code obstruct the process of creating a system’s
high-level, architectural abstraction that aids in reasoning
about the system. A number of software “clustering”
techniques have been developed to cope with this problem
[5-7,10] but these techniques fail to provide much rationale
behind the architecture. This becomes particularly important
if we consider that the source code may actually contain
accidental or emergent functionality and relationships which
are not intended by the system’s developers. For this reason,
we posit that architectural recovery, and software clustering
in particular, need to be accompanied by a system
understanding activity, which includes the use of semantic
information before any syntactic dependencies are
considered. Various representations can be used to describe
successive levels of system’s abstractions. Incited by Perry
and Wolf’s observation [8] that the key architectural
elements of a software system are (1) processing, (2) data,
and (3) connecting, we have developed ARTISAn [3], a tool-
supported, pluggable framework intended to aid program
understanding and, ultimately, architectural recovery.1

Existing software architecture recovery and program
understanding approaches do not necessarily and explicitly

1 ARTISAn stands for Architectural Recovery via Tailorable,

Interactive Source-code Analysis.

identify all the three types of architectural elements, but
rather focus on the computation (i.e., processing) part alone.
Program code elements (e.g., classes) that provide
implementation of communication services often remain
scattered across computational components in the recovered
architecture, instead of being identified as separate entities.
For example, client- and server-side elements in a system
that leverages the TCP/IP communication often end up being
parts of the components that are actually using them.
Furthermore, not having connecting elements explicitly
identified poses an additional challenge to engineers, who
must reason about which parts of the system may interact
with which other ones, and about the protocol of possible
communication. Similarly, since data elements only contain
the information that is used or transformed by processing
elements, by identifying and then abstracting away data
elements, the reasoning about the system is considerably
improved (e.g., in applications built using data-intensive
architectural styles, such as pipe-and-filter).

While in [3] we described the framework in more details
and provided an illustrative example, in this paper we give a
summarization of the approach with an emphasis on
identification of program concerns at the architectural level.
We use the term “concern” twofold: firstly, we distinguish
among the parts of a system that account for the
computation, interaction, and storage of the actual
application-level information that is used and transformed
(i.e., data) in trying to discover where their exact boundaries
are and how they are realized in a system; secondly, the
program elements are analyzed based on the usage scenarios
in which they can participate. By separating program
concerns at the architectural level, the evolution process
becomes easier (e.g., changing the type of communication in
a system, or porting to a new platform when the functionality
remains the same), the overall complexity is reduced, and
reusability improved.

2. OVERVIEW OF THE ARTISAn
APPROACH

There are two main dimensions of concerns [9] in our
approach: (1) purpose, i.e., functionality concerns

represented in the form of Processing, Connecting (also
referred to as Communication), and Data elements (P, C, D);
and (2) usage concerns, describing what is shared among
parts of a system, and what is exclusively used by individual
parts. For example, a class is an element that models a
particular kind of object. This object can provide some
functionality (P), or data (D), or communication (C). Another
concern of interest is how this object is used in a system:
based on its relationships with other objects it can belong to a
region of objects exclusively used by some other regions, or
to a shared region. These two dimensions are orthogonal, and
complement each other.

Figure 1 describes the approach in more details. It

comprises three steps that are initially performed
sequentially but may then be revisited in any order by the
user. The first step, termed initial labeling, results in a
classification of individual elements (e.g., classes) into
processing (P), data (D), and communication (C) [8] based
on ARTISAn’s clues. The result obtained during the initial
labeling phase and a pluggable set of propagation rules
provide input to the propagation labeling step. During this
phase, some non-labeled elements become labeled (i.e,.
classified as P, D, or C), based on the recognition of
structural patterns and relationships with other, already
labeled elements. Furthermore, this step also identifies
possible structural inconsistencies among labeled elements
and alerts the user about them. Initial labeling and
propagation labeling result in an interpretation of the system
that suggests the purpose of each of the system’s individual
elements.

Finally, during the def-use analysis phase, regions of
related elements are identified based on invocation and
inheritance relationships. The obtained regions distinguish
between elements that are shared across regions and those
that are exclusive to a region. The result of this phase is a
system’s usage view representation, which provides
information on parts of the system that could be grouped
together based on their usage scenarios.

Individually, the purpose and usage views provide the
user with a classification of elements and their grouping
based on usage analysis, respectively. These two views also

complement each other. For example, if some unlabeled
elements from the purpose view end up belonging to the
same region with labeled elements of a single type, then one
can surmise the purpose of the unlabeled elements. In total,
our approach gives the user a better understanding of the
system, and an opportunity to faster locate its parts that are
of particular interest (e.g., for maintenance purposes).

3. ARTISAn CLUES AND INITIAL
LABELING

At the most general level, software systems integrate
processing elements that exchange data via communication
(connecting) elements [8]. By determining the type of a
system element, one can distinguish elements with
application-specific functionality from those with
application-independent functionality. Typically, processing
elements provide application-specific functionality as they
implement the system’s requirements. On the other hand,
communication elements typically provide application-
independent interaction facilities. In Java, for example,
classes interact by invoking each other’s methods and/or
sharing data through public variables, regardless of the
classes’ functionality. In addition, a number of off-the-shelf
communication elements (e.g., middleware) are available. A
useful starting point in understanding the source code of a
system is thus in the reusable, application-independent nature
of its communication elements. Similarly, data elements only
contain the information that is used or transformed by
processing elements. Therefore, identifying and then
abstracting away data elements can further improve the
reasoning about the system.

Software systems are generally described by their design
or implementation models (e.g., class diagrams). Often, the
models are too detailed, so that their understanding becomes
obscured. In ARTISAn, constituent elements of these models
(e.g., classes) are at first classified into the three
aforementioned categories, providing a user the opportunity
to quickly gain an overview on the purpose of individual
elements and the structure of their composition. The process
of classifying system elements into one of the three
categories is termed labeling. The labeling is based on
various design and implementation snippets, termed clues.
Clues carry syntactic, semantic, and possibly domain-
specific information, which is searched for in a system’s
model. For example, in Java-based systems, if there is an
attribute in a class that declares a use of the standard network
socket library java.net.*, one can use it as a clue to the
existence of a communication channel, which is directly used
by this class. Similarly, all classes that implement the static
method main, or inherit from the library class
java.lang.Thread, or implement the java.lang.Runnable
interface are likely to be processing elements. Furthermore,
classes with no methods other than constructor(s) are very
likely to be data elements.

The clues described above comprise a subset of all the
clues that belong to ARTISAn’s extensible and pluggable set
of clues, which is not intended to be complete, but rather a
starting point. We expect each programming paradigm and
language, domain, and/or application to have their own set of

D
es

ig
n/

Im
pl

em
en

ta
tio

n

Initial
Labeling

Clues

Propagation
Rules

Propagation
Labeling

Entry
Points

Def-Use
Analysis

Purpose
View

Usage
View

Figure 1: The ARTISAn framework.

clues. ARTISAn distinguishes between the following clue
categories:
• Domain-independent clues, such as the Socket class

being classified as C, or a class with no methods being
recognized as D. This is the most general set of clues.

• Domain-specific clues, e.g., in case a system is built on
top of a known middleware platform. For example, an
element of the Siena middleware is classified as C and
the classes having access to Siena are appropriately
marked.

• Application-specific clues, such as a class of name
“jigsaw.Resource” in the Jigsaw Web server being
recognized as D.

To visualize these concerns in a given system the
ARTISAn tool uses different colors to represent different
classes’ labels on the class diagram, or combinations of these
colors if a class has more than one label. Unlabeled classes
remain transparent.

It should be noted that the clues are designed in such a
way that applying them may identify one or more categories
that an element belongs to (e.g., it is a processing and
communicating element), but also one or more categories to
which the element does not belong (e.g., it cannot be a
processing or communication element). We refer to the
former as an inclusion list, and to the latter as an exclusion
list. This information is of particular importance during the
propagation labeling phase.

4. ARTISAn RULES AND
PROPAGATION LABELING

It is very likely that not all elements in a system can be
labeled based on ARTISAn clues. However, the existing
knowledge about a system could be used to reason
additionally about the system. Information obtained from
clues can be propagated from labeled elements to their
neighboring elements (both labeled and unlabeled) when
certain conditions are satisfied.

We refer to this kind of reasoning as clue propagation.
Clue propagation serves as a basis for the ARTISAn
propagation rules. The pluggable set of propagation rules
and the result obtained during the initial labeling phase
provide input to the propagation labeling step (Figure 1).
During this phase, some non-labeled elements become
labeled, based on the application of the propagation rules.

Propagation rules are derived from structural and interaction
patterns involving different types of elements. Figure 2
illustrates these patterns.

The left-hand side of Figure 2 shows that a processing (P)
element could call other processing, communication (C), and
data (D) elements. In other words, there are no restrictions on
what type of elements might be called by a processing
element. On the other hand, our experience has shown that
off-the-shelf communication elements usually do not invoke
any other element (e.g., in the case of socket-based
communication), or if they do, the invoked elements could
only be processing elements (e.g., in the case of COM-based
communication element). We should note here that some
technologies that are used to bridge across different
computing platforms (e.g., the Java-to-COM bridge) may
involve communication elements calling other
communication elements. However, in those cases we would
be dealing with specialized solutions that would allow us to
recognize such situations on a case-by-case basis.
Furthermore, these cases would be amenable to capture by
specialized domain- or application-specific propagation clues
and rules, which would result in an appropriate identification
and labeling of all such elements. Finally, data elements are
expected to be passive entities that may perform some
rudimentary internal processing, but are otherwise not
interacting with processing or communication elements. To
describe the propagation rules in a more formal way, we will
use the right-hand side of Figure 2, which is a transpose of its
left-hand side (e.g., only P or C can call P).

Figure 3: Propagation rules based on scenarios.

Based on the caller-callee relationships in Figure 2, we
can deduce six propagation rules, which are depicted in
Figure 3. For example, rule 1 in Figure 3 states that if an
element is known to be a processing element (denoted by +P
in the middle box), then all elements that call it (its callers)
cannot be data elements (denoted by -D). The rationale for
this is as follows: from the right-hand side of Figure 2 we
know that either a P or a C can call another P. This implies
that the caller cannot be D. Since we do not know whether
the actual caller is P or C, we only write that it is not D. In
this way we avoid having to make an early (but possibly
incorrect) decision. The question mark in the right-hand
column of rule 1 indicates that we cannot say anything about
the elements being called by that element (its callees).
Similarly, if an element is known not to be a processing

P

C

D

P

C

D

P

D

P

C

D

P

C

P

P

D

Figure 2: Propagation scenarios.

+P

+C

+D

-D ?

+P
-D -C

+P
-D -C

-C +D
-P -C

-P

-C

-D

-C -C

? ?

-D ?

(1)

(2)

(3)

(4)

(5)

(6)

element (-P), as in rule 4, then neither the caller nor the
elements being called can be communication elements. This
rule is again derivable from Figure 2. If an element is not P
then it is either C or D. We know that C can be called only
by P, and that D can be called by P or D. It follows that C or
D can be called by at most the union of their callers, which is
P or D. Since we do not know whether it is P or D, we
simply write that it is not C. All other rules can be derived in
a similar way.

The algorithm for applying propagation rules is based on
the changes in the inclusion and the exclusion lists for each
of the system’s elements. As long as there are changes in any
of the two lists (e.g., an unlabeled element becomes labeled,
or a processing element becomes classified as non-
connecting element), an appropriate propagation rule is run.

This step also provides support for identifying any
potential rule conflicts. For example, if a class is identified as
a processing element through one propagation rule, but also
as not a processing element using another rule, then we know
that either the clue or one of propagation rules was
erroneous. Conflicts are easily identifiable due to their
simple implementation representation (+P and -P) and
ARTISAn reports all inconsistencies to the user. At that
point, the user has the choice to manually label the elements
if they are of a known type, ignore the discovered conflict
(e.g., in case when a helper class of known functionality has
conflicting labels), or use that information to modify the set
of clues, and rerun the propagation labeling step. In the last
case, both the user and the tool are “learning” about new
clues that could be used for other systems.

5. DEF-USE ANALYSIS IN ARTISAn
The next step in our approach is the identification of regions,
i.e., groups of system elements that are closely related, or
independent of other parts of the system. To this end, we
adapt def-use analysis. Def-use analysis is an approach that
has already been used in literature. [4,6] proposed the use of
dominance analysis to identify regions of related modules.
These regions indicate parts of a system that are exclusively
used by its other part(s) and those that are shared. Each of
the identified regions has an entry point, which is a module
where processing starts (e.g., a class with the main()
method implemented). Entry points in ARTISAn are directly
obtained from the initial labeling step (Figure 1). Those are
all elements that satisfy the “main” clue, but also include
elements that are able to create a new processing thread. The
rationale for this lies in the fact that systems often spawn
their own subsystems by creating separate processing
threads. We can identify spawning using clues which were
discussed previously.

The information about regions enables a user to more
easily recognize system elements that belong together. The
usage view thus complements the purpose view by
combining information about high-level functionality of
individual elements with information about regions of related
elements.

6. CONCLUSION
This paper discussed ARTISAn, an exploratory and
tailorable framework that helps in program understanding
tasks. The framework comprises replaceable components to
accommodate the exact programming environment and
supports developers in understanding large-scale, multi-
lingual source code. The approach leverages a two-
dimensional separation of concerns, which results in two
orthogonal views of a system: (1) high-level functionality
view (i.e., purpose) and (2) usage view of system elements.
In tandem, these views provide the user with a better
understanding of the system, and an opportunity to faster
locate the parts that are of particular interest (e.g., for
maintenance purposes). Furthermore, the approach illustrates
how the same program element might be involved in more
than one concern of interest.

There are numerous ways to improve our technique.
Some of them include the use of reliability metrics that
would depend on the reliability of each of the clues and rules
applied, and may then be used to (automatically) resolve any
of possible inconsistencies that result from the labeling
process. The other direction of improvement is in providing a
richer set of domain- and application-independent clues. For
example, the fact that delegating classes act as facades or
wrappers to other classes, might turn up to be useful in
recognizing communication-processing relationships.
Furthermore, the presented rule set can be extended by
additional rules that include additional system concerns as
subcategories of the three major element groups (P, C, and
D), such as GUI (P) and interruptible communication (C)
type elements. Such a richer propagation rule set would lead
to a better understanding of the purpose of a system’s
elements and, ultimately, its architecture.

7. REFERENCES
1. M. Bauer and M. Trifu, “Architecture-Aware Adaptive

Clustering of OO Systems,” in Proc. of the Eighth
European Conference on Software Maintenance and
Reengineering (CSMR 2004), Tampere, Finland, March
24-26, 2004

2. D. R. Harris, A. S. Yeh, and H. B. Reubenstein,
“Extracting Architectural Features from Source Code,”
In Automated Software Engineering 3, 1996, pp. 109-
138.

3. V. Jakobac, A. Egyed, and N. Medvidovic, "Improving
System Understanding via Interactive, Tailorable
Source Code Analysis." To appear in Proceedings of the
8th International Conference on Fundamental
Approaches to Software Engineering (FASE),
Edinburgh, UK, April 2005.

4. T. Lengauer and R. E. Tarjan, “A Fast Algorithm for
Finding Dominators in a Flowgraph,” ACM
Transactions on Programming Languages and Systems,
Vol. 1, No. 1, pp. 121-141, July 1979

5. N. Medvidovic and V. Jakobac, "Using Software
Evolution to Focus Architectural Recovery," In Journal
of Automated Software Engineering, To appear, 2004

6. N. Mendonca and J. Kramer, “An Approach for
Recovering Distributed System Architectures,” In

Journal of Automated Software Engineering, vol. 8, pp.
311-354, 2001

7. H. A. Müller, K. Wong, and S. R. Tilley
“Understanding Software Systems Using Reverse
Engineering Technology,” In The 62nd Congress of
L’Association Canadienne Francaise pour
l’Avancement des Sciences Proceedings (ACFAS), 1994

8. E. Perry and A. L. Wolf, “Foundations for the Study of
Software Architecture,“ ACM SIGSOFT SOFTWARE
ENGINEERING NOTES, vol 17 no 4 Oct 1992

9. P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr,
“N Degrees of Separation: Multi-Dimensional
Separation of Concerns,” In Proc. Intl’l Conf. Software
Eng., May 16 - 22, 1999 Los Angeles, USA, pp. 107-
119

10. K. Wong, S. Tilley, H. A. Müller, and M. D. Storey,
“Structural Redocumentation: A Case Study,” IEEE
Software, Jan. 1995, pp. 46-54.

